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Abstract

The standard triumvirate of “New Media” in the mathematics curriculum – CAS, DGS and
spreadsheet – is establishing its secured position in teaching. This article illustrates, using the
evolution of the software Cinderella as a guiding example, how a further integration of these
products will allow for new teaching approaches. These will support the formation of important
mathematical competencies, such as the ability to find and rate mathematical models for real
world problems. A central observation is the algorithmic nature of user-defined functions and
that it is crucial for the learning process to be able to execute algorithms step by step.

1 Introduction
Many teachers today consider integrating the computer into their curriculum, or they already made
this step. We are not discussing the reasons for this trend in this article, and neither will we judge this
as either good or bad. Instead, we will point out how software interoperability and integration offers
new possibilities of media use in the classroom for mathematics education.

During the last 15 years, three major software pillars emerged in that area. Computer Algebra
Systems, CAS, constitute the symbolic counterpart to calculators, Interactive (or Dynamic) Geometry
Software, DGS, is the modern replacement for ruler and compass, and spreadsheet applications are
used for organizing and structuring data for easier handling and analysis, thus also replacing the
notion of a variable by the notion of a table cell. All three found their place in teaching, but in our
experience many teachers are focusing on only one of the three products. It is rarely seen, again in
our experience, that teachers have the time and energy to master several different systems and to feel
confident enough to use all of them in teaching.
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However, this is less of a problem – given that we appreciate the use of New Media in the class-
room – as one might expect. In many cases, a computer-enriched activity can be based on any of the
three software types: An exploration can be carried out by dragging points in a sketch, or by evaluat-
ing a formula for many different point configurations using a spreadsheet. A functional dependence
can be formulated using the language of a CAS, and it can be constructed in a DGS. A stochastic
process can be described and visualized in a table, or it can be simulated using a short program in a
CAS, etc. Often, we can choose whatever tool is accessible for the students (or better: us), and find a
way to use the computer in teaching.

This is supported by the availability of features from other software types in the other ones.
For example, even early versions of DGS like Cabri Geometry offer a table feature, where a set
of measurements and calculations can be displayed row wise for different states of a construction.
In a spreadsheet application data can be visualized in a geometric way, and it is even possible to
base a sketch on cell data, by which we can simulate a dynamic move mode. All modern CAS do
support graphics, primarily plots of functions in 2D and 3D, but some of them also offer geomet-
ric primitives that can be used to build up complex scenes, again based on computed or external
data. Modern CAS even offer interactivity, see for example the Wolfram Demonstrations Project
at http://demonstrations.wolfram.com/. Vice versa, most DGS offer function plots or
even allow for the placement of points on curves given by symbolic expressions. There are even some
DGS, notably GeoGebra of Hohenwarter [Hohenwarter, 2008], that allow for symbolic manipulations
like symbolic derivation, or can find symbolic expressions for the coordinates of dependent elements
[Todd, 2006, Todd, 2008].

One might tend to ask whether there is still a need for these different tools, when they all seem
to be similarly suited for teaching mathematics. But still, each of them has specific strengths that
should be taken into account when one plans to really enhance teaching. It is absolutely necessary to
be aware of these strengths when the use of the computer should go beyond a technophile and blind
adoption. Here we mention just of few of them, as our main focus will be elsewhere.

Immediate visualization of and hands-on interaction with mathematics is at the core of DGS’s
powers. If we want to activate as many senses as possible and have parallel stimulations in the
learners’ mind, then DGS play an important role. The movement of the mouse that is carried out by
the student will have much more impact than a mere visualization that is consumed like a TV show.

Structured access to large quantities of data is something spreadsheet applications provide much
better than any other mathematical tool. It is paired with a built-in need for discretization and mod-
eling, because the table structure is not suitable for continuous or non-categorized data. Using 2D
or 3D graphs of data we can use multi-view capabilities that will activate more regions in the mind,
and thus offer the opportunity to have several representations that may suit more students and also let
them prescind from the particular representation to discover the mathematical meaning behind it. The
last point is not specific to spreadsheets, but applies to all multimodal approaches.

Finally, the symbolic manipulation of formulas in CAS offers a rich field of experimentation that
is not surpassed by any of the other mathematical software types. With CAS it is possible to leave the
paths that everybody else is going for finding solutions (and questions), at the risk of getting lost com-
pletely (fortunately we can get back by interrupting the current calculation!). In [Kortenkamp, 2004]
this is discussed in more depth. Other benefits that come with a symbolic (in its literal sense) system
are the stepwise mode of working and the formulation of subroutines. A not to be neglected fact
is the form factor of CAS: systems that are built in into calculators, for example the TI Voyager or
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Casio Classpad series, are robust and can be used spontaneously in the classroom, whereas PC-based
software often needs setup and configuration time that is not available.

In the remainder of the article we will describe how the integration of CAS capabilities into a DGS
and the introduction of new topics into the school curriculum, leads to an area that was not accessible
for the standard tools so far. As we base our observations on the evolution of the interactive geometry
software Cinderella.2 [Richter-Gebert and Kortenkamp, 2006], the view might be biased. However,
we try to emphasize the universal principles that drove this evolution and that are applicable to other
software as well.

Our approach supports any learner-centric and process-oriented educational theoretic frameworks.
For example, in conceptual change theory [Posner et al., 1982], which acknowledges that learners do
have previous concepts that might not match the concepts that are necessary to understand a given
situation correctly, students need a chance to experience the conflicts between their concepts and
reality. In the context of supplantation [Salomon, 1994], the combination of an interactive design and
computer algebra can help to build mental models (see [Vogel et al., 2007] for an in-depth description
of using interactive function graphs). As a last example consider the model of cognitive apprenticeship
[Collins et al., 1989], where students need a way to reproduce and comprehend what they are shown
(see also [Bescherer et al., 2009]).

We describe in [Kortenkamp, 2007] how the technical aspects mentioned here correspond to the
various roles of computer use in mathematics education.

2 Functions and their Graphs in DGS
It is obvious that a geometric system should be able to serve as a function-plotting device. This is
the straightforward way of transferring a functional relationship into a geometric context, and many
examples that focus on using the computer as a discovery or presentation tool show how useful this
feature is (see, for example, [Schumann, 1998]).

For a DGS it is not enough to support the automatic generation of loci, even though this approach
might be more geometric to some. This is due to the fact that in schools geometry has a strong focus
on its analytic nature, and it is extremely important to offer a bridge between formulas that are written
down and their geometric interpretation. Functional thinking is one of the most important concepts
that were introduced over 100 years ago in the course of the Meraner Reform (see [Klein, 1907,
Gutzmer, 1908]). It has been brought to attention again in recent decades [Vollrath, 1989], and it is
still topic of modern research [Krüger, 1999, Krüger, 2000], in particular with the use of computers
in mind [Roth, 2005, Hoffkamp, 2009]. So, without doubt, a proper handling of functions, both for
display (of their graphs) and as parts of constructions, is highly desirable and should be supported by
any DGS.1

The Interactive Geometry Software Cinderella [Richter-Gebert and Kortenkamp, 1999], a DGS
co-developed by one of the authors, was at first a pristine incarnation of coordinate-free Projective
Geometry. Measurements are done using Cayley-Klein Geometry via cross-ratios of certain points or
lines. A special treatment of constructions in complex projective space made it possible to guarantee a
continuous (actually: analytic) behavior of constructions. In this framework, it was nearly impossible

1It is also important to see that DGS offer a coordinate-free approach to geometry as well, that should not be concealed
too early by the mandatory use of coordinates
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to include user-defined functions. A major obstruction was that many functions just are not analytic,
like the absolute-value-function abs, or the square root function

√
·. As it is not feasible to omit these,

we had to find a solution to include arbitrary functions without loosing the continuity properties of the
system as a whole. If it were for display only, this would not be a problem, but if we cannot interact
with the function graphs, i.e. place on points on them, we loose the interactivity and immediateness
of a DGS.

2.1 2-way Communication between CAS and DGS
The way out of the dilemma described above was found when we tried to setup a two-way com-
munication between the DGS and the CAS Mathematica [Kortenkamp, 2001]. Of course, a general
CAS includes the problematic functions mentioned above, so a true communication, where results
from either software are used by the other one, would face the same problems we already had with
including non-analytic functions. The main idea was to assume that the CAS acts as another user,
i.e. elements that depend on calculations in the CAS are moved discretely from one position to the
other. The continuity is preserved by interpolating the start and end position linearly, in the same way
as it is done with the discrete mouse positions that are reported by the window system when the user
manipulates a construction. At the conference Multimedia Tools for Communicating Mathematics we
were able to present this as a working prototype.

2.2 Functions and Programming
After the main problem was solved, it was only a matter of time to introduce functions into the soft-
ware. A parser for mathematical expressions had to be written, and the elementary functions had
to be provided as built-ins. After some time it became clear, that as soon as it is possible to work
with custom definitions, lists, iterators, and conditionals, the function parser will become as power-
ful as any programming language, and by adding a few convenience methods a versatile functional
language (CindyScript) for extensions of the original software was born. A growing set of exam-
ples shows the power of this language (see, for example [Fest, 2005, Ladel and Kortenkamp, 2008,
Richter-Gebert and Kortenkamp, 2007]). The most important benefit is the complete customizability
of interactive learning environments for geometry. Teachers can adjust interactive exercise sheets to
their and their students’ specific needs.

Let us just point out the didactical value of programming with a minimalist example. In Fig. 1
we see three instances of the same configuration, a triangle ABC. Students can move the vertices A,
B, and C and get some feedback about the area of the triangle. They do not get the full information
that the software has available (the area of the triangle), but only three different statements: The
area is less than 10 cm2, more than 10 cm2 or equal to 10 cm2. This information hiding enables
students to focus on something when they drag. They can find out that the “border” between less-
than and more-than is a line at a certain distance to the baseline of the triangle. If we show and
update automatically the measured area, i.e. if we do not hide that information, students might be
distracted and just observe that “everything changes” when they drag a point. This is similar to the
information overload that can be observed in certain situations where students work with hands-on
material [Kaminski et al., 2006, Kaminski et al., 2008].
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Figure 1: Showing only part of the available information

Remember that this is only a basic building block. There are almost no limits on what can be
achieved using this kind of “functions,” as the examples of [Fest, 2005] and others show. At the
same time, it is also clear from a theoretical point of view, because the function language includes all
necessary ingredients to be Turing-complete [Brainerd and Landweber, 1974].

Besides customizing visualizations by the teacher, programming by students can also be used suc-
cessfully for learning. [Fuchs, 2007] states that functional thinking can be substantiated by dealing
with algorithms. He claims that students sense functional implementing to be very efficient for as-
sisting functional thinking. And – of course – for the development of students’ algorithmic thinking
programming by themselves is essential.

3 Algorithms and Functions
While the function support of Cinderella was also a necessary consequence of the experience of
users with other DGS packages, we had, at the same time, the wish to support something else in the
software that we could not find elsewhere. Discrete Mathematics, in particular graphs and algorithms
on graphs, has always been a gratifying area of mathematics for education; however, most of the
time it is seen as an add-on for spare time and not as a central topic that has to be covered. In the
DFG Research Center MATHEON we are working on educational material that can be used for a
proper integration of topics from Discrete Mathematics into curricula, and at the same time we try to
advance the inclusion of this kind of mathematics into the official curricula.

Since graphs can be visualized using points and line segments or arcs, and also many of the real-
world problems we want to model with graphs come from a geometric context, we were eager to be
able to work with graphs in our software. Also, the algorithms we are using on the graphs should
be visualized using the DGS. Both ideas are not new – the famous DGS Cabri started as a tool for
graph visualization, and there are numerous software packages for visualizing graph algorithms. It
was new that we wanted to combine both aspects in the same software, in order to be able to stick to
a well-known user-interface and to preserve the user experience.

3.1 Integrating Algorithms into DGS
We came up with an add-on package called Visage [Geschke et al., 2005] that supports all standard
algorithms accessible to 7th to 12th grade students, and more. More information can be found on the
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Figure 2: An example worksheet from the Visage package. Students can model a graph directly on a
map of the local subway system and use shortest-paths algorithms interactively. Material created by
Anne Geschke, TU Berlin.

project homepage at http://cinderella.de/visage, where you will also find the software.
Using the software, it is possible to visualize graphs (including a dual-view that shows the adja-

cency matrix) and to step through graph algorithms (depth and breadth-first search, Dijkstra’s algo-
rithm, bipartite matchings, and others). A pseudo-code version of the source can be shown that helps
students to trace the algorithm’s execution.

All included algorithms have been implemented in Java and strictly followed an imperative pro-
gramming paradigma. They were hard coded into the software package which means that they are
neither editable nor extendable for users, a major drawback that we will discuss below.

The algorithm framework we used for Visage supports threaded execution of the interactive ge-
ometry part in parallel with the graph algorithms. This is crucial for the stepping control, where we
can decide whether the algorithm is running slowly, as fast as possible, or one statement at a time,
triggered by mouse clicks.

There are some subtleties to be aware of, as we are facing a different paradigm when we start
dealing with external algorithms. An algorithm might change not only the state of a construction
(i.e., move points or change attributes of elements), but it can also change the underlying construction
sequence by adding or removing geometric elements. At this point we are facing the fundamental
discrepancy between a sequential resp. procedural approach and a pure functional approach.

3.2 Merging Functions and Algorithms
In the previous sections we discussed two topics, the inclusion of functions into a DGS, and the
inclusion of algorithms into a DGS. These might appear only loosely related at first sight, but we claim
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that they are highly connected: Both are genuine applications of CAS. Working with functions is a
core activity with CAS, and the programming languages that are used for CAS and the corresponding
command-line interface for it are providing all we need for writing algorithms and executing them
step-by-step.

A final evidence for the similar nature of the two is that after some changes in the code abstraction
we could easily add another function evaluation language instead of CindyScript, in our case Jython, a
Java-based Python clone. Now it is possible to use both CindyScript and Jython as defining languages
for functions. As Jython is an object-oriented scripting language that is similar to Java, there is no
problem in using it instead of Java for the implementation of the graph algorithms.

This means that we are conceptually very close to a powerful combination of concepts: Once we
can use the script language Jython (or CindyScript) for the graph algorithms, we are also be able to
allow for user-defined algorithms or alterations to the build-in algorithms.

Back in 2005, our final goal was to provide a flexible environment where one can work with
algorithms both as extensions to the interactivity of DGS, i.e. in the function sense that was described
in Sec. 2, and in the step-by-step mode that lets algorithms be the subject of research themselves. In
an interactive environment any algorithm might ideally be used in both ways without changes in the
code.

For example, the calculation of minimum spanning trees for weighted graphs can be solved by
some algorithm. This algorithm can also be seen as a function that assigns a corresponding tree to
each graph. Figure 3 depicts an exemplary implementation of Prim’s MST-Algorithms using the
CindyScript programming language. While in the step-by-step mode, for a certain input set the
minimum spanning tree is calculated once, in an interactive environment this assignment must be
re-evaluated each time the input graph changes. We already demonstrated this with the Java-based
version of “external algorithms” [Kortenkamp, 2005], where one could use the same code for a step-
by-step demonstration of Boruvka’s Minimum Spanning Tree algorithm or a dynamic visualization
of the MST. A similar demonstration using the CindyScript programming interface can be found on
the Visage project homepage. This approach aditionally offers the possibility of showing multiple
algorithms in the same visualization. Users can explore the differences and similarities of different
algorithms for the same problem set. For example, we provide a worksheet that lets the user construct
an arbitrary graph. On this graph the user can run the depth-first search and the breadth-first search
algorithm either stepwise or with the result shown dynamically while the graph changes.

3.3 Automated Algorithm Validation (AAV)
A promising new area of research is the automatic validation of user actions with respect to given
algorithms, which we will illustrate with an example below. AAV shareA similar approach is fol-
lowed in the project SAiL-M (see [Bescherer and Spannagel, 2009] and the project homepage at
http://www.sail-m.de). Starting October 2008, this project investigates how students’ learn-
ing processes in learning mathematical processes can be analyzed and aided by automated and semi-
automated validations using the computer as an interactive learning environment. First results of
SAiL-M relevant to our setting are presented in [Fest and Kortenkamp, 2009].

In our concrete scenario here, the software is not used just for running the algorithm, but also for
accounting while the user executes an algorithm manually. For depth-first search, the software had to
offer ways for the user to mark vertices, move from the current vertex to a neighbor of it, and maintain
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//finding cheapest edge that connects a new Node to the tree
firstConnectingEdge(edges, tree):={

newtreeedge=false; // no new tree edge found yet

forall(edges,edge,
vw=incidentvertices(edge); // the two incident vertices of the edge
vwtree = common(tree,vw); // which vertices belong to the tree?

// Is the edge connecting a new vertex to the tree?
if(length(vwtree)==1,

if(newtreeedge==false, // only use the cheapest (first) edge!
newtreeedge = edge; // found tree edge

);
);

);
newtreeedge; // return the new tree edge

};

// Algorithm of Prim
prim(vertices,edges):={

treenodes=[vertices_1]; // the first vertex is the starting tree vertex
treeedges=[]; // the edges belonging to the tree

edges=sort(alledges(),getweight(#)); // list of all edges sorted by weight

forall(1..(length(vertices)-1),
// we have to choose one edge less than vertices

newtreeedge=firstConnectingEdge(edges,tree); // find the cheapest new edge
treeedges = treeedges :> newtreeedge; // add edge to tree

treenodes = set(treenodes,incidentvertices(newtreeedge));
// add vertex to tree

);

treeedges; // return tree edges
}; //end of Prim

// execution and coloring
forall(alledges(),#.color=[1,0,0]); // coloring all edges red

// coloring all tree edges green
forall(prim(allvertices(),alledges()),#.color=[0,1,0]);

Figure 3: CindyScript implementation of the algorithm of Prim
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Figure 4: A teaching unit on MST: a) exploring own strategies: the computer judges the solution; b) comparing two
textbook algorithms; c) a route planning tool developed by students.

a stack of vertices. Then, the user could execute actions that correspond to a depth-first search, while
the computer will check whether the order of actions is indeed a valid depth-first traversal. Like in
the case of automatic checking of construction sequences (see the auto-checking exercises possible
described in [Richter-Gebert and Kortenkamp, 1999]), there is an exponential number of possible
execution orders, and the validation cannot be done trivially. Thus, the software has to be able to
compare the users’ actions with statements like “with every neighbor of the current vertex do . . . end”.
The didactical contribution of such a package would be that we have an open learning environment,
which still provides a feedback mechanism for unattended and independent work of the students.

4 Exemplary Implementation and Results
The new Berlin state curriculum for secondary schools [LISUM, 2006] contains a section on Mini-
mum Spanning Trees, which we implemented using the Visage software. The unit was carried out
with two groups of students at the age of 13 to 17 years. A more detailed description of this class
room experiment is given in [Fest, 2008].

4.1 AAV for Student’s Solution Processes
We use automated algorithm validation as a student’s tool for the development of own algorithmic
solutions. The main educational objectives are that the students embrace the structure of the problem
and can use usual textbook algorithms to solve the problem. The first goal is reached by modeling the
problem and finding own solutions, the second by investigation and implementation of the algorithms.

First, the students should develop their own solutions for the problem of connecting all cities of
an imaginary country with roads with the cheapest connections possible. The students were asked
to reflect on their own solution strategies. After some unstructured trials using paper and pencils the
students were given an electronic worksheet to support their thoughts. In this worksheet the student
can mark or unmark possible roads by simple mouse clicks. They get immediate feedback, the length
of the chosen network, for each solution they try.

Additionally, the computer can judge the solution in three steps. First, using the depth-first search
algorithm, the computer checks wether the student’s solution does connect all cities. Next, the same
algorithm is used to check the absence of cycles in the solution, which is a necessary condition for the
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optimality of a solution. Finally, if a student has constructed a tree solution, the optimality is checked
using Kruskal’s MST algorithm.

The whole worksheet – handling of user interactions and algorithmic checks – was created using
the script programming interface. Our classroom experience showed that the students were faster
in developing good solution strategies when they used the electronic worksheet as their attention is
more focused on the right aspects. The students who used the worksheet also had fewer problems in
verbalizing their strategies afterwards.

After finding own solution strategies the students were asked to explore the standard textbook
algorithms by Kruskal and by Prim. Therefore, another worksheet similar to the BFS/DFS example
described in section 3.2 was implemented. In this worksheet both MST algorithms can be executed
step-by-step on arbitrary graphs.

4.2 Students’ Programming
The students also had the possibility to implement Kruskal’s algorithm on their own using the Cindy-
Script programming interface. The programming language had to be learned on the fly; as an aid
the students had an example implementation of Prim’s algorithm. Although none of the students had
any programming experience before, some of them succeeded implementing the algorithm within
only two and a half hours. As the implementation of an algorithm requires a mental restructuring
of the student’s knowledge, programming Kruskal’s algorithm helped the students to deepen their
understanding of the algorithms.

By dint of the easy-to-learn programming language and its good integration into the DGS even
the younger students were able to create own interactive worksheets. This also animates the students
to vary the problem settings. In the following lessons some students of 8th grade created an electronic
worksheet on the Traveling Salesman Problem on their own. They had to understand the Double-
Tree-Approximation of the TSP for this task. Another group of older students engaged themselves in
the development of an online route planning tool for the Berlin subway net.

All in all, this first experiment showed the viability of our approach, and asks for a proper investi-
gation and empirical research in future studies. In particular, we would like to know how automated
algorithm verification can help to foster conceptualization in mathematics. First steps of this analysis
take place in the project SAiL-M (see Sec. 3.3). The technology presented here is one of the necessary
tools to carry out such studies.

5 Future Directions and Acknowledgements
We want to summarize the three main conclusions from the above:

• Functions are intrinsically algorithmic. The main tools for working with functions are CAS,
and their symbolic user interface is presenting a (mathematical) programming language. When
we want to include functions into any other software, we are very close to opening a door to
algorithmic explorations.

• A proper experimentation tool for algorithms, which can foster the understanding of mathe-
matical models and how they are used to find solutions to real world problems, has to provide

270



The Electronic Journal of Mathematics and Technology, Volume 3, Number 3, ISSN 1933-2823

mechanisms for a stepwise and user-controlled execution, and an interactive mode for an im-
mediate hands-on user experience.

• The presence of a simple programming tool strongly connected to a mathematical visualization
tool opens new ways to investigate in functional and algorithmic dependencies. Using it, stu-
dents seem to be motivated to explore problems and questions which they introduce on their
own.

In the near future we will revise and publish Cinderella’s Java API which supports the algorithm
framework mentioned in Sec. 3. A prototype of the API was already successfully approved in a
course on graphs and network algorithms at the Technical University of Berlin in summer term 2008.
The new API allows for almost full user access to the interactive geometry kernel and the threading
control of the algorithms. The published source code of exemplary built-in algorithms allows a deeper
exploration of the algorithms by the students. The use of the API seems to be especially suited in
university teaching.

On the educational side, based on our first experiences in using our tools, more empirical studies
should be done within precise theoretical frameworks. We expect that, though the tools are applicable
in various settings, the results will differ depending on other circumstances caused by the correspond-
ing theory.

We would like to thank Jürgen Richter-Gebert for his enormous amount of programming for
Cinderella.2, Anne Geschke for her work on the Visage material, and Dirk Materlik for his invaluable
help in debugging and extending this piece of software.
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